Measure the Mechanical Behavior of Thin Films Using Four Step Phase-shifting Methods on the Novel Paddle Cantilever Beam

نویسندگان

  • Ming-Tzer Lin
  • Chi-Jia Tong
  • Ya-Chi Cheng
  • Kuan-Jung Chung
  • Jiong-Shiun Hsu
چکیده

A technique developed for studying the mechanical behavior of nano-scale thin metal films on substrate is presented. The test structure was designed on a novel “paddle” cantilever beam specimens with dimensions as few hundred nanometers to less than 10 nanometers. This beam is in triangle shape in order to provide uniform plane strain distribution. Standard clean room processing was used to prepare the paddle sample. The experiment can be operated by using the electrostatic deflection on the “paddle” uniform distributed stress cantilever beam and then measure the deposited thin metal film materials on top of it. The measured strain was converted through the four step phase-shifting method measurement for the deflection of the cantilever. System performance on the residual stress measurement of thin films were studied with the deflections of silver, gold, and copper films and calculated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Characteristics and Vibrational Response of a Capacitive Micro-Phase Shifter

The objective of this paper is to control the phase shifting by applying a bias DC voltage and changing the mechanical characteristics in electrostatically-actuated micro-beams. This problem can be more useful in the design of micro-phase shifters, which has not generally been investigated their mechanical behavior. By presenting a mathematical modeling, Galerkin-based step by step linearizatio...

متن کامل

Effect of Temperature Changes on Dynamic Pull-in Phenomenon in a Functionally Graded Capacitive Micro-beam

In this paper, dynamic behavior of a functionally graded cantilever micro-beam and its pull-in instability, subjected to simultaneous effects of a thermal moment and nonlinear electrostatic pressure, has been studied. It has been assumed that the top surface is made of pure metal and the bottom surface from a metal–ceramic mixture. The ceramic constituent percent of the bottom surface ranges fr...

متن کامل

Influence of aging temperature on phase transformation and mechanical behavior of NiTi thin films deposited by magnetron sputtering technique

In this study, NiTi thin films were deposited on the glass and NaCl substrates by means of magnetron sputtering method. The influence of aging temperature, over the range 300-500 oC, on phase transformation and mechanical properties of the sputtered NiTi thin films were studied by differential scanning calorimetry (DSC) and nano-indentation assay, respectively. The DSC curves showed that the ag...

متن کامل

Mechanical Properties and Microstructural Evolution of Ta/TaNx Double Layer Thin Films Deposited by Magnetron Sputtering

Crystalline tantalum thin films of about 500nm thickness were deposited on AISI 316L stainless steel substrate using magnetron sputtering. To investigate the nano-mechanical properties of tantalum films, deposition was performed at two temperatures (25°C and 200°C) on TaNx intermediate layer with different N2/Ar flow rate ratio from 0 to 30%. Nano-indentation was performed to obtain the mechani...

متن کامل

Nonlinear Vibration Analysis of a cantilever beam with nonlinear geometry

Analyzing the nonlinear vibration of beams is one of the important issues in structural engineering. According to this, an impressive analytical method which is called Modified Iteration Perturbation Method (MIPM) is used to obtain the behavior and frequency of a cantilever beam with geometric nonlinear. This new method is combined by the Mickens and Iteration methods. Moreover, this method don...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009